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ABSTRACT

The Perron-Frobenius Theorem states that a matrix with

nonnegative entries has at least one nonnegative eigenvalue

of maximal absolute value and a corresponding eigenvector

with nonnegative components., An- this paper-we discuss

generalizations of this celebrated theorem that locate an

eigenvalue of maximal absolute value and the components of

a corresponding eigenvector within a certain angle of the

complex plane depending on the angle which contains the

entries of the matrix. A complete description of the 2 x 2

case as well as partial results for the general case are given.
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:1.1

1. Introduction and Statement of Results.

The Perron-Frobenius Theorem states that a matrix with nonnegative

elements has at least one nonnegative eigenvalue of maximal absolute value.

It seems natural to ask for generalizations that locate an eigenvalue of

maximal absolute valud within a certain angle of the complex plane depending

on the angle which contains the elements of the matrix.

More precisely, let us consider the family An(a) of all n X n

complex matrices A = Cajk) whose entries are contained in a sector

(a) {z: jarg zj a; 0 6 a 9 n fixed).

For each A E A n(a) let P = P(A) denote the minimal (nonnegative) angle

for which the sector S(P) contains an eigenvalue of A with maximal

absolute value. Thus, defining

p(a) = sup p(A),
A E A (a)

we pose the following

PROBLEM 1. Give Pn(a) as a function of a and n.

The Perron-Frobenius Theorem states that

Pn(0) = 0, n = 1,2,3.

Another simple observation is that for any m < n and A E A (c),

we have A 9 O. E An(a), where 0 is the k X k zero matrix. Thus,

(1.1) n(a) is a nondecreasing function of n.



1.2

Obviously,

(1.2) (or) a;

so (1.1) and (1.2) yield

Pff(a) P 100v = or, n=12,

Since

A n(a) Q A a(W') for a' > a,

we also find that

Pn(a) is a nondec'reasing function of a.

In Section 2 we evaluate p 2(CO and obtain some partial results for

arbitrary n, as stated in the following theorem:

THEOREM 1.

A* (i) If n 2 then

af fora

fora>
2-2

(ii) If n k3 is odd then

P~()=nfora>

(iii) If k 4 is even then
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Pn a + for < a 9n 2n =22n- 2'

and

pn(a) = n for a> 2--2

Note the discontinuity of 02 (a) at a =/4.

We also note that part (i' of the theorem implies that in general, A

in A (a) does not have a square root in A (a/2).

Recall tha. the Perron-Frobenius Theorem not only proves that for

matrices with nonnegative entries an eigenvalue of largest absolute value

is positive, but also that a corresponding eigenvector can be chosen with

nonnegative components.

With this in mind, for each A E A (a) we denote y = y(A) to

be the minimal (nonnegative) angle such that the sector S(Y) contains

the components of an eigenvector corresponding to an eigenvalue of maximal

absolute value which lies in S(P(A)). Hence, defining

yn(a) = sup y(A),
A E (a)

we pose:

PROBLEM 2. Determine Yn(a) as R function of a and n.

The Perron-Frobenius Theorem tells us that

n(O)= 0, n = 1,2,3,...,

and we obviously have

Y1 (a) = 0.
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Also, as for n (a), it is not hard to see that

yn(a) is a nondecreasing function of n,

and

yn(a) is a nondecreasing function of a.

Finally, since any eigenvector (x1 ,...,xn)' E n (prime denoting

the transpose) can be rotated so that its components are embedded in the

sector S(n-n/n) it follows that

n

In analogy with the Perron-Frobenius Theorem it is perhaps natural

to ask whether

Yn(a) = on(a), n 2,3,4,...,

or whether there is any nontrivial bound for yn(a) when a > 0. This

turns out to be incorrect, at least for all n a 4, as stated in the

following theorem which is proven in Section 2:

THEOREM 2.

(i) If n = 2 then

a+ for O<aS

Y2(0)=

for a > .

(ii) If n 3 then
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Y3 (a) k 2a + for 12

and

Y3 (a ) = 2 for a > -

(iii) If n 2& 4 then

(1.3) = n- n-1 for a> 0.

For n _ 2 note the discontinuity of yn(a) at a = 0.

We also note that in fact, for n 2, a k n/4; n = 3, a > 7t/12;

and n k 4, a > 0; yn(a) attains its maximal possible value.

Theorems 1 and 2 and the inequality in (1.3) can be summarized in

the following two tables:

n 2 2 2 3 3 3

a 0 < a S<a a of>g 0 <a 1S < a S>
2 2> O ~~12 12 6

n(a) a a+ ir aa + X

22a

yn(a) a k 2a +

Table 1. Cases n = 2,3

I .lll 4 l , ,'l , 1l ' IB-ll I ' II J l
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n n 4 even n k 4 even n k 4 even n k 5 odd n k 5 odd

0~ ~ < < n a >

2n 2n 2n-2 2n-2 2n 2n

_n_ a _

n- n-1 n-1 i n-1
"n- - n n n n n

Table 2. The case n k 4

We have not settled the following questions:

QUESTION 1. If 0 5 a S n/2n and n k 3, is n(a)=a?

QUESTION 2. What is pn(a) if a > 4 is even and n/2n < a S n/(2n-2)?

QUESTION 3. If 0 < a S n/12, what is

i.

a-p
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2. Proofs.

Prco of Theorem 1. Since for all n and a we have

a On (a) 5,

and since Pn(a) is a nondecreasing function of a, it remains to

obtain the upper bounds

(2.1) n2 (a) a, .

(2.2) P2() ;5 a + < a

and the lower bounds

(2.3) P (a) + n-a + 7 n2> 2 even, -<a 2n-

(2.4) pn(a) k n, n 3 odd, a > n= - 2n'

(2.5) n a)it, n > 4 even, a > 7-
n•- 2n-2

We start with the upper bounds.

Since multiplication of a matrix by a constant multiplies the

eigenvalues by the same constant, we may assume that the spectral radius

of A, i.e., the maximal absolute value of the eigenvalues, is 1.

Moreover, since the eigenvalues of the conjugate matrix A - (aij) are

the complex conjugates of the eigenvalues of A, we can assume that
! eip(A)

= is an eigenvalue of A.

- -- .,|= ,. - . ,
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With these assumptions we first prove that

(2.6) P(A) < a + ic/2 for A E A2 (oe), 0 <a -< n/2.

Let A = (ajk) E 42(a) have eigenvalues X = eip(A) and '. Since

X +X'= tr A = a 1 a22 E k(CO

and since

K'EU

where U is the unit disc centered at the origin, then

X. E u n (-x + sa)).

Thus,

(2.7) + X' E (X + U) fl () - T

so that T is the intersection of the unit disc centered at A and-

the sector S(a). Therefore, if

p(A) k a + R/2,

then T = (0), and by (2.7), X' = -X. Hence, I'! = 1 with

larg X'I < arg X = P(A) in contradiction to the definition of P(A).

L Thus we have (2.6), and (2.2) follows.

Now, fix a with

0 S a 5 t/4,

and let us prove (2.1).
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Suppose that for some A = (ajk) E A2(a) with eigenvalues X = eip(A)

and ', Ix'I < 1, we have

(2.8) a< P(A) < a + n/2.

Since P(A) < a + n/2, then T t {0). Further, since P(A) > a,

then if max. arg a.. < a, there exists a positive number r so that

max arg(a.. = a.
j=1,2

We can thus replace A by the matrix

A I- (A + rAI) E A2 (a)

whose eigenvalues are X and X" = (X' + rk)/(l + r). Hence, IA"I < 1,
_ _ I

unless ' = A = 2 tr A E S(A) which contradicts the assumption that

P(A) > a. So, we may use A0 instead of A, drop the subscript, and

assume without loss of generality that

(2.9) arg a 1  a[.

By (2.7) we have

(2.10) a +a 2 2 = tr A E T;

so

a2 2 E -all + T.

Also, by (2.9), (2.10), and since a22 E S(a), we have all E T; so if

we denote by ail the point symmetric to all in T, then (see Figure 1)

- 7 -- -
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= 2e cos(P - a) - all E -a11 + T.

We may not have

a2 2  a11.

For in that case

A' = tr A - a1 1 + all

hence Mx' I = 1 and by (2.8), larg 'I <Iarg X( which contradicts the

definition of P. Therefore,

a2 2  11

so

arg(A - a22) < arg(A - a

and

(2.11) arg(X - a.1)(X - a22) arg(X - a11) + arg(A - a22)

< arg(A - a) + arg(A - a'l) (0 + a) + (n - 0 + a) = n + 2a.

Since A E A (a) we also have

(2.12) arg(X - a11)( - a22) = arg(X - a11) + arg(X - a22) Z 2p > 2a,

and

(2.13) -2a arg a12a21  2a.

But now, since 0 S a 6 x/4, equations (2.11)-(2.13) contradict

the characteristic equation of A,



(A- -2.5

al 8a22) =a,2a21 *

Thus, assumption (2.8) fails; so in view of (2.6) we must have

and (2.1) follows.

Figure 1.
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Figure1
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The main tools in obtaining the lower bounds in (2.3)-(2.5) are the

n x n circulants

a0  a1 . . an-2  an-1

(2.14) A an-I a0 an-3  an-2

a1 a 2 an-1  a0

whose eigenvalues are

~ a0 + aw + aw
2 + + A 1

j 2 j  + a U- j j n,

where

w. = e 2nij/n I ...,nU

are the n-th roots of unity.

Assume now that

oa > x/2n,

and set the a. in (2.14) to zero except for the entriesJ

+" ' ~ia iann
a= e , aM+1 = re

r > O, 0 < e < nl2n, 0 S am n-2,

where c is chosen sufficiently small so that A E A a(a) and m will be

determined later. The eigenvalues are

a= (a+ w a )w , j = I..,,

and we see that their maximal absolute value is obtained for the j that

minimize$

_ .
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Iarg a* " arg(w."a+ )I = larg a - arg - arg a 1  - 2n +

Since 0 < e < n/2n, this occurs at j = 1; thus,

IA1 1 > IXl , j -

and consequently

P(A) = Iarg A1
i .

Moreover, since the argument of am + wla,+ goes from argam=a to

arg wIam+1 = a + n/n - 8 as r goes from zero to infinity, then

arg = arg(a, + wla.+l)wl = arg(a* + wla,~l) + 2nm/n

runs through the interval
.. I

(2.15) i=( + ,a +i - .

Now, if n is odd and

n/2n < a < n/n,

we pick
*l = n-i

2 ;

so the interval I in (2.15) contains x. Hence, there exists a circulant

A E A,(a) such that

O(A) =arg l = I

i i
' '

... ..- ,
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Therefore,

Pn(a) n, n 3 odd, !- < a<y -

and by the monotonicity of Pn(a) in (1.4) we get (2.4).

n

If n is even and

X/2n < a S n/(2n-2),

we choose

n-2
2

so that the interval I contains the point a + n - n/n - 2. Thus,-U

we can find a circulant A E A (a) with

P(A) = jarg A11 = a + n - f/n - 28;

and since 9 was arbitrarily small, we have

Pn(a) k a + k n 2 even, <

so (2.3) is established.

Finally, if n is even and

a > n/(2n-2),

then

a > R/21

where A n-i is odd. Thus, by (2.4),
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~I

and since Pn(a) is a nondecreasing function of n, we obtain (2.5). 03

Proof of Theorem 2. Since for all n and a we have

yn(a )  -n_1 n

and since yn(a) is a nondecreasing function of a, it suffices to obtain

the upper bound

(2.16) 0 < a ,

and the lower bounds

l (2.17) Y2( ; + 4 0 < a W [

(2.18) ¥30 a+ ,0 < a< -

(2.19) y(a) n, n a 4, a>0.n n.

Starting with the upper bound in (2.16), we let

a ;5 n/4,

and take any A = (ajk) E A 2(a). As in the previous proof, we may

assume without loss of generality that the eigenvalues of A are A

and A' with

J-I INNNl'
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S e I .1 1 .

Now let (x1,x2)' be an eigenvector corresponding to X. If one of

the components vanishes, the other may be taken to be 1; so in this case

y(A) = 0. If the eigi'nvector does not have a zero coordinate we may

assume that it is of the form (1,x)' where x 0 0, thus

(2.20) y(A) = llarg xl.

We have

a11 + a12x = ,

a21 +a = AX,

and therefore

A - al a2
A-a 21

(2.21) x11
a12  -a 22

Since a 5 n/4, then by part (i) of Theorem 1 we have P(A) 6 a

so the interval connecting the origin and the point A lies in s(a),

and the line r through A perpendicular to the interval [0,K)

(see Figure 2) must intersect the positive real axis. Now, if al1

and a22 are located on the right of r then

1al1+ a221 > 2 1 A = 2,

in contradiction to the fact that

I11 + a22 x I S + IA'! S 2.

Thus, say, a11 is on the (closed) left side of r, and
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Iarg(X-a11 )I 9 larg XI + =

So finally, by (2.20) and (2.21), and since 5 t a, we have

y(A) = glarg xl =farg2 a 12 :

! Iarg(X-a 1 )I + !Iarg a12 1 (p + + C) _a +

and (2.16) follows.

F

Fiur

I@
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Figure2
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For the lower bounds, our tools are n x n lower triangular

matrices of the form

x

a At 0

A a A' ,I l < IAl

a At

where evidently, the eigenvector belonging to A is given, up to an

arbitrary factor, by

(2.22) (1, x, x2, ... , xn'l) ' with x = a

With these matrices, we now make suitable choices for the quantities

A, A' and a for different values of n.

First, for n = 2 and

0 < a S n/4,

set

l = e, ' - i (a+n / 2 )  a=

where E > 0 is small and then 6 > 0 is chosen so small that A'j < I

and A E An(a). The vector in (2.22) is now

(I ,x)', -i(2Gafl/2- ).

thus

0_ 1-
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y(A) = jargxl a+i- I

and since £ is arbitrarily small we obtain (2.17).

For n =3 and

0 < a n/l2,

we make the same choice of X, V' and a as for n = 2, so

the eigenvector in (2.22) is

X(1 , x 2)', x e-i(2a+n/2-6)

Therefore,

y(A) = Iarg x2 l = 2a + n/2 - C,

and again, since c is arbitrarily small, we obtain (2.18).

For n = 4 and a > 0 we set

A = e , A' = cos 9, a = sin E, 0 < C < a.

The corresponding eigenvector in (2.22) is (1, i, -1, -i)'; so

y(A) n

and (2.19) holds for n = 4.

a Finally, if n > 4 and a > 0, our choice is

, - > -2ni/

= 1, issufc1 , a l, thO, w1 E _ f/ n,

whr gin f£is sufficiently small thenAEA()an tKI(1
where again, if A E~-n~a n [<

!A
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The eigenvector in (2.22) is now f
2n-I)(I, W, Wit ... P W1

so

y(A)=
n

and the proof of (2.20) is complete. o

Note that the lower bounds in (2.17)-(2.19) were obtained for matrices

in A (a) whose eigenvalues are all contained in S(a). In fact, for

n k 4 we found matrices A such that y(A) obtained the maximal possible

value, while all the eigenvalues were arbitrarily close to 1.

Il2
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